

Role of Plant Flavonoids in Skin Health

Lin LI, Ph.D., Senior Research Scientist Naturals & Bioscience, Unilever R&D Shanghai

Presented at 5th Comoceutical Summit Conference Renaissance Shanghai Pudong Hotel 25th ~ 26th Oct, 2012

Multiple benefits of flavonoids

Plant flavonoids possess a range of biological activity:

- Estrogen-like activity
- Direct influence on extracellular matrix
- Cardiovascular protective effect
- Anti-inflammatory and anti-allergic effect
- Photoprotection
- Anti-microbial activity

Estrogen-like activity

Phytoestrogens

- Naturally found in plant foods and structurally related to endogenous estrogens;
- •Present in many diets, especially in Asia;
- •Classified into flavonoids and liganins;
- •Demonstrating higher binding affinity for estrogen receptor (ER) β which is dominantly expressed in skin and its appendages, than for ER α .

Fig. Structure of genistein Fig. Structure of daidzein

Fig. Structure of equol

Estrogen-like activity

6-month isoflavonoid rich soy extract human intervention study

Fig. A histological gluteal skin section from a patient before (A, C) and after (B, D) treatment with isoflavones.

The arrows indicate the dermal papillae, and "v" are the vessels. (A and B 250x; C and D 450x, H.E.)

Table Skin histological parameters in postmenopausal subjects (n=30)

Parameters	Before treatment	After treatment			
epithelial thickness (µm)	560.8 ± 4.4	$613 \pm 4.6*$			
epidermal papillar index (%)	10.4 ± 1.9	$14.7 \pm 4.0^{*}$			
dermal collagen (no units)	152.0 ± 2.2	163.0 ± 2.3*			
elastic fibers (no units)	525.4 ± 4.2	$611.2 \pm 4.6*$			
dermal vessels (number per slide)	64.2 ± 1.4	$1.1 \pm 1.6^{*}$			
*p<0.01 compared to data before treatment by					

paired Student's t-test.

Source: Clinics 2009, 64:505-10

Direct effect of extracellular matrix -

Pycnogenol a.Whole study population b. Subjects with dry skin (n = 20) (n=13)

Unilever

12-week Pycnogenol human intervention study

Fig. <u>Skin hydration</u> assessed with a Corneometer CM 825. The statistical significance was obtained by t test, and p values less than 0.05 were considered statistically significant.

a. Cutometer MPA 580 - R2

b. Cutometer MPA 580 - R7

Fig. <u>Skin elasticity</u> measured with Cutometer MPA 580. The statistical significance was obtained by t test, and p values less than 0.05 were considered statistically significant.

Source: Skin Pharmacol Physiol 2012;25:86–92

Direct effect of extracellular matrix -

12-week Pycnogenol human intervention study

Fig. <u>Skin fatigue</u> assessed by cutometry. The statistical significance was obtained by t test, and p values less than 0.05 were considered statistically significant.

Fig. <u>Gene expression</u> of HAS-1, col lagen (COL) 1A1 and 1A2. Statistical significance was evaluated by Wilcoxon signed-rank test.

Source: Skin Pharmacol Physiol 2012;25:86–92

Direct effect of extracellular matrix – Cocoa polyphenols

Unilever

matrix in *ex vivo* human skin.

Source: Int J Cos Sci. 2008, 30: 339–45

Anti-allergic/anti-inflammatory effect

Multiple anti-allergic mechanisms:

- Polyphenols bind to allergen
- •Direct effect on T cell, e.g. inhibiting cytokines, inducing T cell apoptosis
- Inhibition of Ig production
- Inhibition of degranulation

Source: Clin Exp Allergy, 2011, 41: 1346–1359

Anti-inflammatory effect – Oolong tea

Fig. A 21-year-old patient with recalcitrant atopic dermatitis.

6-month open clinical trial

Patients: 121 patients (mean age, 24 yrs) with refractory atopic dermatitis (AD).

Intervention: Drinking oolong tea 3 times daily for 6 month. 10 g of dried oolong tea leaves was placed in 1000 mL boiling water and steeped for 5 min. The oolong tea was divided into 3 parts and drunk after 3 regular meals.

Efficacy of 1- and 6-Month Oolong Tea Treatment in 118 Patients With Atopic Dermatitis

Period of	Clinical Response to Oolong Tea, No. (%) of Patients					
Treatment,	Markedly Improved	Moderately Improved	Slightly Improved	Unchanged	Worsened	
1 6	20 (17) 9 (8)	54 (46) 56 (47)	18 (15) 29 (24)	22 (19) 21 (18)	4 (3) 3 (3)	

Source: Arch Dermatol, 2001, 137: 42-43.

Anti-inflammatory effect – Grape seed proanthocyanidins

Fig. 8-day orally administered grape seed proanthocyanidins (GSPs) reduced ear swelling induced by 2,4-dinitrofluorobenzene (DNFB) in mice. Source: Toxicol Let 2012, 210:1–8

Anti-inflammatory effect

Fig. Effects on pro-inflammatory gene expression and release and protein phosphorylation in normal human epidermal keratinocytes (NHEK). 50 µM verbascoside (Vb), resveratrol (Rv), polydatin (Pd), rutin (Rt), or quercetin (Qr). *P<0.05; §P<0.01 vs control.

Source: Toxicol Applied Pharmacol 2011, 255:138–149

Anti-inflammatory effect

Fig. Modulation of lipopolysaccharide (LPS)-induced gene expression and NFκB activation, as well as ERK, and EGFR phosphorylation by plant polyphenols.

Source: Toxicol Applied Pharmacol 2011, 255:138–149

Anti-inflammatory effect - Quercetin

Fig. Quercetin inhibited degranulation of primary human cord blood-derived cultured mast cells (hCBMCs) triggered by IgE/Anti-IgE. * p<0.05, ** p<0.01. WSQ=water soluble quercetin; Que = quercetin; Crom= cromolyn.

Cardiovascular protection – grape/wine polyphen

The cardiovascular protective action of flavonoids on skin blood vessels is complex. Three main components: **blood vessel protection**, **platelet aggregation prevention, and capillary permeability decrease.**

Fig. Effects of <u>grape extract</u> (skin, seed, juice, resveratrol, etc) on the early steps of atherosclerosis. oxLDL indicates oxidized LDL; PGE2, prostaglandin E2.

Source: Nutri Res 2008, 28: 729–37

Photoprotective effect – Green tea

Fig. Administration of GTPs in drinking water (0.2%, w/v) inhibits UVB-induced skin tumor development in wild-type (WT; C3H/HeN) mice, but does not inhibit it significantly in IL-12 KO mice. Significant inhibition versus UVB alone at the termination of the experiment, *p<0.01, ¶p<0.05.

Photoprotective effect – Green tea (Cont.)

Fig. Administration of GTPs in drinking water inhibits UVB-induced increases in inflammatory responses in the epidermis of WT mouse skin, but is less effective in inhibiting these responses in IL-12 KO mouse skin.

Source: J Invest Dermatol. 2009, 129: 1258-

Fig. Oral administration of GTPs to mice inhibits enhanced expression of MMP-2 and MMP-9 in UVB-induced skin tumors while increasing the expression of TIMP1.

С

D

MMP

AMP-9

actin

Band intensities relative to actin

**

Tumors

**

Source: J Nutr. 2005, 135: 2871–7.

Skin

Photoprotective effect – Apigenin & Luteolin

UVA radiation (15 J/cm²)

Fig. Effects on intracellular ROS generation in HaCaT cells. *p < 0.01 *vs* UV-treated control.

Source: J Dermatol Sci. 2011, 61: 23-31

Fig. Effects on the activation of c-Jun and c-Fos transcription factors in HaCaT cells irradiated with UVA. *p < 0.01 vs UV-treated control.

Thank you for your attention! Questions?

