Consideration Points for Nonclinical Safety Testing of Biotherapeutics

Yi Yang Director of Preclinical Safety Sanofi R&D China DPE of Asia-Pacific

- Impact of large molecule on safety assessment
- Establish species relevance for testing animal models
- Consideration points in biotherapeutics' preclinical safety assessment
- Studies/data not typically relevant for biotherapeutics
- Current preclinical capability in China to support biotherapeutic development
- Biologic development-related regional regulatory landscape

Types of Biotherapeutic Products*

Biopharmaceuticls are a diverse class of human therapeutics generally produced in characterized cells

Center for Drug Evaluation and Research	Center for Biologics Evaluation and Research
Hormones	Blood and tissue product
Cytokines, growth factors	Vaccines
Antagonists/ inhibitors	Gene-transfer products
Monoclonal antibodies and related products	Cell-based therapies
Modified human proteins	Tissue-engineered products

The goals of preclinical safety assessment for biotherapeutics

Aims of nonclinical safety evaluation

- Identify target organs for potential toxicity
- Determine reversibility if toxicity observed
- Help to determine clinical starting dose, maximum dose and dose escalation scheme for Phase I
- Identify potential biomarker/parameters for clinical safety monitoring if there is any safety signal
- Provide data for safety information on the label (communicate risk)

In comparison to small molecules, biotherapeutics have:

Large molecules, proteins Limited ability to cross biological membranes Degraded into amino acids (lack of reactive metabolites) Long half-life Specific human target Human target absent in most- if not all - animal species Target-related biological activity Toxicity mostly related to pharmacological effects Toxicity mostly related to pharmacological effects Target-related biological effects Cenotoxicity assays generally not relevant (exceptions - cytotoxic conjugate) Less frequent dosing but long recovery/washout period Potential issue of species relevance Rare off-target toxicity "case by case" safety assessment vs. "check box"	Features of Biotherapeutic	Impact on safety assessment
and Clobal Pharmacourtical Summit CRO Forum 5	 Limited ability to cross biological membranes Degraded into amino acids (lack of reactive metabolites) Long half-life Specific human target Human target absent in most- if not all - animal species Target-related biological activity Toxicity mostly related to 	generally not relevant (exceptions - cytotoxic conjugate) Less frequent dosing but long recovery/washout period Potential issue of species relevance Rare off-target toxicity "case by case" safety assessment vs. "check box"

Consideration point 1: Establish species relevance for testing animal models

- The most important factor in safety evaluation of a biologic is selection of a relevant species
 - Species expresses desired target or epitope
 - Biologic exerts expected pharmacologic effects
 - Tissue distribution of target is similar between human and test species
- Identify relevant species based on scientific rationale
 - Often nonhuman primate is only relevant species
 - Occasionally, when no relevant species alternative approaches:
 - Surrogate antibody
 - Transgenic model
 - Conducing tox studies in non-relevant species is to be discouraged
 - Unreliable safety data (no toxicity)
 - No off-target effects expected
 - If no relevant species or alternative in vivo model, in vitro safety package may be considered for some indications
 - Will result in very slow clinical dose escalation

Demonstrate toxicology species is pharmacologically relevant

Practical approach for species relevance determination

- Sequence homology as compared to human: %
- Distribution of target as compared to human: expression ratio and intensity
- Binding affinity as compared to human : nM
- Functional assay as compared to human: e.g. % inhibition (Expression does not necessarily mean function)

Consideration point 2: Immunogenicity evaluation (1)

- Human proteins often immunogenic in animal species
- Immunogenicity in animals is not predictive for humans
 - Anti-drug antibodies (ADA) should be assessed for adequate interpretation of tox studies
 - Increase clearance and decrease exposure
 - Neutralization of pharmacologic effects
 - Cross-reactive with endogenous protein limiting function –
 altered function can lead to toxicity

Consideration point 2: Immunogenicity evaluation (2)

- When ADAs are detected
 - The effect on the study results should be addressed: PK, PD, and toxicity
- Immunogenicity issues in toxicity studies can often be addressed through study design modifications
 - Immunogenicity often <u>inversely</u> proportional to dose
 - s.c. route more immunogenic than i.v. route
 - Increase group size to ensure enough animals with adequate exposure

Consideration point 3: Immunomodulation and immunotoxicity

- Immunomodulation intended
 - Intended PD effect on immune system
- Immunotoxicity unintended
 - Unintended impairment of any component of immune function
 - Major risks
 - Acute reaction, cytokine storm, chronic immunosuppression >> opportunistic infections and cancer
 - ICH S6 principles should be applied for safety assessment
 - May require screening studies and/or mechanistic studies

Consideration point 4: Tissue Cross-reactivity

Tissue cross-reactivity (TCR) study

- Required prior to entry of mAbs into Phase I
- The tested tissues come from human and animal donors
- IHC in a broad panel of frozen tissues
- Identify off-target binding and target expression in non-disease tissue
- Not specified but normally conducted under GLP
- Not required for justification of tox species relevance
- Differences in staining pattern between human and animal <u>does</u> not preclude using species for tox studies
- IHC can be useful for interpretation of toxicology studies

Route of administration:

- Biologics usually not administered orally
- Mimic clinical route
- In some cases, IV toxicology studies may support clinical studies with subcutaneous administration with a local tolerance test
- Other routes may be used IM, intra-articular, intrathecal

Consideration point 5: General Tox Study Design (2)

Dose selection

- Maximum tolerated doses may not be achieved due to limited toxicity
 - Not necessary to elevate the dose to identify MTD
- Dose multiples may be scientifically justified using several approaches
 - Target binding/saturation
 - Maximum pharmacologically active dose
 - Highest anticipated clinical dose/exposure
- Appropriate high dose multiples typically range from 10-25x
- Distribution of large biologics (≥ 100 kDa) is limited to extracellular space
 - Dose extrapolation from tox studies is on mg/kg basis

Consideration point 5: General Tox Study Design (3)

Frequency of Dosing

- Biologics typically have long half-lives (1-2 weeks), except for Fab fragments have shorter half-lives (hours)
 - Infrequent dosing but long recovery period
- Administered at least as frequently as intended clinic schedule
 - Differences in PK between human and tox species should be considered
- Increasing frequency may help to reach higher exposure
- Frequency may be increased to overcome a clearing ADA response

Consideration point 5: General Tox Study Design (4)

Duration

- Typical durations: 1/3/6 months
- Longer than 6 months duration generally not required (ICH S6)
- Single-dose and range finding studies are of limited value

Recovery period

- Examine reversibility of adverse effects
- Duration based on half-life

Consideration point 6: Developmental and Reproductive Toxicity (DART) Studies

- Standard DART studies in rodent/rabbit may be not relevant
- Reproductive toxicity studies should be conducted in relevant species only, and in accordance with the principles outlined in ICH S5(R2)
- Studies can be obviated in some specific cases
 - Extensive public information for a particular class of compounds (e.g. interferons)
- Discussion with the regulatory agencies is still needed

Special consideration 7: Placental transfer

- Large proteins (>5,000 Da) do not cross the placenta by simple diffusion
 - Recombinant receptor proteins
 - Fab fragments demonstrate minimal placental transfer
- Full IgG antibodies are actively transported across the placenta
 - Species specific FcRn-mediated transport determines fetal exposure of some antibodies (mAbs and Fc-fusion protein)
 - Primate placental transfer occurs after organogenesis
 - Placental transfer occurs throughout gestation in rodents
 - IgG isotype effects placental transfer (IgG1>IgG4>IgG3>IgG2)

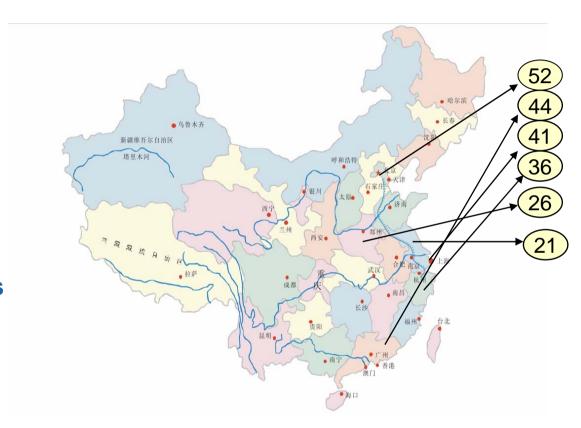
Special consideration 8: Carcinogenicity

- Requirement for carcinogenicity studies a major unresolved issue of the ICH S6 Addendum process
 - 2-year rodent bioassays generally considered inappropriate for biotherapeutics
 - Species relevance
 - Off-target effects are rare
 - No metabolites
- Carcinogenicity risk assessment
 - Package assembled by sponsor to address the risk
 - The nature of target/ligand (pharmacology)
 - The target population
 - Signals from toxicology studies
 - Carcinogenic potential of similar compounds
 - Additional in vitro/ in vivo studies as available

Special considerations for biotherapeutics (1): Genetic toxicity

- Genetic toxicity tests generally not performed with biotherapeutics
 - Interaction with genetic material not expected
 - No entry into nucleus
 - Situations that might need gene tox studies
 - Impurities
 - Genotoxic conjugates
 - Molecules expected to interact with genetic material

Special considerations for biotherapeutics (2): Safety pharmacology


- Approached on case-by-case basis
- Generally, stand alone safety pharmacology studies are not performed
 - Large peptides and proteins cannot readily penetrate cell membrane
 - Safety pharmacology endpoints may be incorporated into the general toxicology studies (clinical observations, ECG, body temp)

Where the main force of biotech companies in China?

- According to the report on the web of SFDA, 482 biotech companies are recorded.
- The biotech companies are located in 29 provinces or cities all over China. 35.9% of them located in the economy developed districts such as Beijing, Shanghai, Guangzhou Province, Jiangsu Province etc.

Current biopharmaceutical development in China

- By the end of 2009, total 13 mAb approved by sFDA
- Among them, 7: imported (most homologus); 6: domestic (3鼠源型, 1嵌和型, and 2个人源化单抗)

The response to "sanofi 2011 Investigation Questionnaire"

- The bio-pharmacy questionnaire was sent to 40 CROs all over the country at the beginning of May 2011
- We received 12/40 of the replies from them
- 10/12 have the safety evaluate experience for biologics
- 9/10 have the certificate and experimental condition to conduct preclinical safety assessment with monkeys
- Capable to conduct all required nonclinical safety assessment for biologic development

Current regulatory landscape for biologic development in Asia Pacific

- China: Translated and started to implement ICH S-series guideline including S6
- Japan PMDA and KFDA: Claimed to follow ICH guideline completely
- Taiwan and Hong Kong districts: Claimed to follow ICH guideline completely

Thus, the IND package generated anywhere becomes more internationally portable/submitable.

Questions and Answers

