2013 激光技术创新应用高峰论坛 OOO Ringier 超短脉冲激光微纳加工新进展 **Progress on ultrashort pulsed laser micro/nanoprocessing** 赵全忠 中国科学院上海光学精密机械研究所 zqz@siom.ac.cn 2013年11月1日·武汉

超短脉冲激光

皮秒激光(picosecond laser)

飞秒激光(femtosecond laser)

超短脉冲激光微纳改性分类

超短脉冲激光诱导材料表面功能结构

Fs laser induced ripple structures on metal surfaces

Polarization-dependent ripples

Nanospikes grown on ripples

The nanospikes have a diameter ranging from 10 to 100 nm (at the neck of the mushroom-like spike) and up to 250 nm in length.

Opt. Express 15, 15741-15746 (2007)

Comparison between water ice spikes and metal spikes

Colored metal

Appl. Phys. Lett. 92, 041914 (2008).

Colored stainless steel

减小刀具摩擦阻力

Precision Engineering 33, 248–254 (2009)

Phys. Rev. Lett. 102, 234301 (2009).

Tuning of contact angles by the period of structures

Transition from hydrophilic to hydrophobic

Fabrication of superhydrophobic surface on Si

Synthesis of ZnO nanoflowers and their wettabilities

Synthesis of ZnO nanoflowers

Time-dependent contact angles measurement

Photocatalytic Properties of ZnO Nanoflowers

Absorption spectra of RB solution catalyzed by the ZnO nanostructure under UV irradiation.

Degradation of the RB under UV irradiation as a function of time.

Opt. Express 14, 4880 (2006)

Fabrication of antireflection surface by fs laser nanostructuring of SiC

Enhancement of absorption and decreasing of reflection

飞秒激光制备场发射的周期碳纳米结构

J. Appl. Phys. 105, 083103 (2009).

Polarization-dependent of nanochain orientation

Fabrication of computer-generated holograms

Two kinds of beam delivery approaches

Precise adjustments of optical delay by observing the SHG or THG to obtain the temporal overlap of femtosecond pulses.

The optical setup is quite simple and temporal overlap is achieved without any adjustments.

Writing of microgratings in glass by two-beam fs laser interference

Formation of array microstructures on silicon

(b)

转写周期微结构

超短脉冲激光诱导材料内部功能结构

Femtosecond laser induced microstructures

The Chem. Rec. 109, 25(2005).

Color centers formation in LiF

Color centers – LiF : DFB laser

Applications of Δn

Near field distribution

Far field distribution

2D and 3D preparation of optical waveguide

Fresnel lens

Fiber attenuator 25 20 (BD) mt/gg ((B)coor) 5 0 Pointnumber

波导设计和制作

激光能量影响

波导截面调控

1-to-N分束器设计和制作

Applications of $\Delta n \rightarrow \text{Ring-resonator}$

Applications of $\Delta n \rightarrow$ Interferometer

Applications of $\Delta n \rightarrow$ Talbot and Damman gratings

Single femtosecond laser beam-induced nanograting

5D optical memory

Adv. Mater., 24(2010)1-5.

Hole drilling of glass by femtosecond laser

Photoreduction

Photochromic Lenses

X — halide ion

- Femtosecond laser photoreduction of ions
 - ≻Nobel metal ions
 - ➤Transition metal ions
 - Heavy metal ions
 - Rare earth ions

Refractive index change in femtosecond laser irradiated Au³⁺-doped silicate glasses

J. Qiu et al. Angew. Chem. Int. Ed. 43, 2230 (2004).

Three-dimensional engrave in glass 16 4:2994

Formation of Si nanocrystals-glass composites

Formation of Ge nanocrystals-glass composites

G. Lin et al., Opt. Lett. 36, 262 (2011).

The future of Δn

In the past, refractive indices of core and cladding layers were approximately 1.50 and 1.45, respectively.

In present case, semiconductors (Si, Ge) and conventional oxide glasses, with indices of about 3.5 and 1.5, respectively.

In the future, 3D integration of different components in glasses are expected.

Micromachining by fs laser

Drilling and cutting of tungsten by fs laser Laser: 800nm, 1kHz, 10-100mW

Fs laser micromaching micro-mechanical oscillators

scheme one

scheme two

Laser: 800nm, 1kHz, 20mW
Hole drilling - Steel

Hole (\$\$\phi100 \mum m\$) drilling in 100 \mum steel sheet Laser: 1064nm, 100kHz, 1W

30 μm diameter hole drilled in 25 μm steel foil Laser: 1064nm, 100kHz, 0.5 W

Throughput ~180 holes/min

Hole drilling -Silicon

		POT DE LOS	
7.	780 nm	532 nm	355 nm
EP	100 µJ	5 µJ	270 µJ
fp	1 kHz	50 kHz	25 kHz

Hole drilling –Ceramic & Glass

1 mm hole drilled in a 200 μ m thick ceramic sheet

Laser: 1064nm, 100kHz, 10W

1 mm hole drilled in a 140 μm thick glass coverslip

Laser: 355nm, 100kHz, 2W

Cutting- Steel 20x20mm 20x20mm² 100µm ps-system fs-system

Cutting of 50 μ m steel sheet

Cutting- Silicon

12 ps	150 fs	
23 mm		50 LMM
Parameters		
522 pm	2	780 nm
552 mm	15.5c 1	000
10 µJ	Ep	800 µJ
10 µJ 50 kHz	E _P fe	800 μJ 1 kHz

Surface structuring 100mm/s 1mm/s

Riplet structures on metallic surfaces with reduced friction

Fs laser fabrication of MEMS device

SiC microgears cut by fs laser Laser: 800nm, 1kHz, 100mW

Thanks for your attention!